Search Torrents
|
Browse Torrents
|
48 Hour Uploads
|
TV shows
|
Music
|
Top 100
Audio
Video
Applications
Games
Porn
Other
All
Music
Audio books
Sound clips
FLAC
Other
Movies
Movies DVDR
Music videos
Movie clips
TV shows
Handheld
HD - Movies
HD - TV shows
3D
Other
Windows
Mac
UNIX
Handheld
IOS (iPad/iPhone)
Android
Other OS
PC
Mac
PSx
XBOX360
Wii
Handheld
IOS (iPad/iPhone)
Android
Other
Movies
Movies DVDR
Pictures
Games
HD - Movies
Movie clips
Other
E-books
Comics
Pictures
Covers
Physibles
Other
Details for:
Edureka | Applied Machine Learning With Python 2025
edureka applied machine learning python 2025
Type:
Other
Files:
101
Size:
3.6 GB
Uploaded On:
March 9, 2025, 8:08 p.m.
Added By:
Prom3th3uS
Seeders:
2
Leechers:
2
Info Hash:
9E641B2064B37602D62A647B69AF06DA8DE0479A
Get This Torrent
Visit >>> http://onehack.us/ https://i.ibb.co/4wS3HTjf/87654.png Edureka - Applied Machine Learning With Python 2025 Course details This course provides an in-depth, hands-on introduction to machine learning using Python. You'll explore core concepts and methods, diving into supervised, unsupervised, and semi-supervised learning. Through practical exercises and examples, you'll master key algorithms including decision trees and random forests for classification, regression for predictive modeling, and K-means clustering for uncovering hidden patterns in unlabeled data. Additionally, you’ll gain insights into using model-boosting techniques to enhance model accuracy and apply strategies for leveraging unlabeled data effectively. By the end of this course, you’ll be able to: - Explain and implement decision trees and random forests as classification algorithms. - Define and differentiate various types of machine learning algorithms. - Analyze the working of regression for predictive tasks. - Apply K-means clustering to explore and discover patterns in unlabeled data. - Strategically use unlabeled data to improve model training. - Manipulate boosting algorithms to achieve higher model accuracy. This course is ideal for learners with foundational knowledge in Python programming and some familiarity with basic statistical concepts. Prior experience in data analysis or working with data libraries (such as Pandas or NumPy) is beneficial. This course is designed for aspiring data scientists, machine learning enthusiasts, and Python programmers who want to deepen their understanding of machine learning and enhance their data-driven decision-making skills. Equip yourself with practical machine learning skills and advance your journey in AI. Enroll in "Applied Machine Learning with Python" today and bring predictive power to your projects. What you'll learn - Explore machine learning algorithms, including supervised, unsupervised, and semi-supervised methods. - Apply decision trees, random forests, and K-means clustering for classification and clustering. - Develop machine learning models to gain insights and make predictions from real-world data. - Enhance model accuracy by applying model-boosting techniques and evaluating their effectiveness. There are 4 modules in this course This course provides an in-depth, hands-on introduction to machine learning using Python. You'll explore core concepts and methods, diving into supervised, unsupervised, and semi-supervised learning. Through practical exercises and examples, you'll master key algorithms including decision trees and random forests for classification, regression for predictive modeling, and K-means clustering for uncovering hidden patterns in unlabeled data. Additionally, you’ll gain insights into using model-boosting techniques to enhance model accuracy and apply strategies for leveraging unlabeled data effectively. By the end of this course, you’ll be able to: - Explain and implement decision trees and random forests as classification algorithms. - Define and differentiate various types of machine learning algorithms. - Analyze the working of regression for predictive tasks. - Apply K-means clustering to explore and discover patterns in unlabeled data. - Strategically use unlabeled data to improve model training. - Manipulate boosting algorithms to achieve higher model accuracy. This course is ideal for learners with foundational knowledge in Python programming and some familiarity with basic statistical concepts. Prior experience in data analysis or working with data libraries (such as Pandas or NumPy) is beneficial. This course is designed for aspiring data scientists, machine learning enthusiasts, and Python programmers who want to deepen their understanding of machine learning and enhance their data-driven decision-making skills. Equip yourself with practical machine learning skills and advance your journey in AI. Enroll in "Applied Machine Learning with Python" today and bring predictive power to your projects. General Details: Duration: 6h 46m 42s Updated: 03/2025 Language: English Source: https://www.coursera.org/learn/applied-machine-learning-with-python Instructor: https://www.edureka.co/ MP4 | Video: AVC, 1920x1080p | Audio: AAC, 44.100 KHz, 2 Ch
Get This Torrent
01-Introduction_To_Machine_Learning/01-Machine_Learning_Essentials/01-welcome_to_applied_machine_learning_with_python_instructions.html
7.0 KB
01-Introduction_To_Machine_Learning/01-Machine_Learning_Essentials/02-course_introduction.mp4
24.4 MB
01-Introduction_To_Machine_Learning/01-Machine_Learning_Essentials/03-machine_learning_in_industry.mp4
25.9 MB
01-Introduction_To_Machine_Learning/01-Machine_Learning_Essentials/04-how_companies_use_machine_learning.mp4
31.6 MB
01-Introduction_To_Machine_Learning/01-Machine_Learning_Essentials/05-how_companies_are_crafting_the_future_instructions.html
4.6 KB
01-Introduction_To_Machine_Learning/02-Overview_Of_Machine_Learning/01-machine_learning_process.mp4
22.3 MB
01-Introduction_To_Machine_Learning/02-Overview_Of_Machine_Learning/02-steps_in_machine_learning.mp4
23.0 MB
01-Introduction_To_Machine_Learning/02-Overview_Of_Machine_Learning/03-types_of_machine_learning.mp4
37.0 MB
01-Introduction_To_Machine_Learning/02-Overview_Of_Machine_Learning/04-machine_learning_101_instructions.html
280.0 KB
01-Introduction_To_Machine_Learning/03-Regression/01-introduction_to_linear_regression.mp4
32.9 MB
01-Introduction_To_Machine_Learning/03-Regression/02-real_life_examples.mp4
44.6 MB
01-Introduction_To_Machine_Learning/03-Regression/03-calculating_ols.mp4
75.4 MB
01-Introduction_To_Machine_Learning/03-Regression/04-equation_of_ols.mp4
30.9 MB
01-Introduction_To_Machine_Learning/03-Regression/05-assumptions_in_linear_regression.mp4
41.5 MB
01-Introduction_To_Machine_Learning/03-Regression/06-demonstration_setting_up_the_model.mp4
40.6 MB
01-Introduction_To_Machine_Learning/03-Regression/07-calculating_r_square_and_rmse.mp4
51.0 MB
01-Introduction_To_Machine_Learning/03-Regression/08-residual_plot_and_q_q_plot.mp4
17.3 MB
01-Introduction_To_Machine_Learning/03-Regression/09-cooks_distance.mp4
40.4 MB
01-Introduction_To_Machine_Learning/03-Regression/10-real_life_examples_of_logistic_regression.mp4
41.2 MB
01-Introduction_To_Machine_Learning/03-Regression/11-what_is_logistic_regression.mp4
49.6 MB
01-Introduction_To_Machine_Learning/03-Regression/12-cost_function.mp4
27.6 MB
01-Introduction_To_Machine_Learning/03-Regression/13-assumptions_in_logistic_regression.mp4
35.8 MB
01-Introduction_To_Machine_Learning/03-Regression/14-demonstration_of_logistic_regression_transforming_data.mp4
57.3 MB
01-Introduction_To_Machine_Learning/03-Regression/15-demonstration_of_logistic_regression_developing_the_model.mp4
32.7 MB
01-Introduction_To_Machine_Learning/03-Regression/16-regression_and_its_assumptions_instructions.html
4.1 KB
01-Introduction_To_Machine_Learning/03-Regression/17-role_of_regularization_instructions.html
5.7 KB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/01-confusion_matrix.mp4
19.3 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/02-example_for_calculating_confusion_matrix.mp4
58.5 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/03-conditions_for_over_fitting_and_under_fitting.mp4
22.1 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/04-overfitting_and_underfitting.mp4
57.5 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/05-performance_metrics_mse_rmse_mae_mape.mp4
47.0 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/06-r_square_rmsle_and_adjusted_r_square.mp4
33.1 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/07-working_of_r_square.mp4
42.1 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/08-significance_of_r_square.mp4
52.8 MB
01-Introduction_To_Machine_Learning/04-Evaluation_Metrics/09-evaluation_of_all_things_predictive_instructions.html
17.3 KB
01-Introduction_To_Machine_Learning/05-Module_Wrap_Up_And_Assessment/01-summary_for_inception_of_machine_learning.mp4
16.0 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/00.Support - Onehack.Us.txt
94 bytes
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/01-classification_in_machine_learning.mp4
31.1 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/02-what_is_decision_tree.mp4
63.6 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/03-decision_tree_entropy_and_information_gain.mp4
53.3 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/04-step_by_step_building_of_decision_tree.mp4
77.8 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/05-pruning_in_decision_tree.mp4
53.4 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/06-demonstration_importing_data.mp4
46.6 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/07-demonstration_building_decision_tree_and_random_forest.mp4
63.6 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/08-demonstration_importance_of_features.mp4
25.3 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/09-demonstration_production_ready_random_forest.mp4
18.8 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/10-demonstration_hyperparameter_tuning.mp4
31.3 MB
02-Machine_Learning_Algorithms/01-Decision_Tree_And_Random_Forest/11-decision_trees_and_random_forests_instructions.html
5.8 KB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/01-what_is_svm.mp4
37.1 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/02-terminologies_in_svm.mp4
86.2 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/03-hinge_loss_function_and_other_parameters.mp4
82.8 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/04-demonstration_of_svm_exploring_the_data.mp4
29.4 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/05-demonstration_of_svm_setting_up_the_svm_classifier.mp4
68.0 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/06-what_is_naive_bayes.mp4
18.8 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/07-working_of_naive_bayes_bayes_theorem.mp4
46.3 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/08-example_of_naive_bayes_algorithm.mp4
74.9 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/09-demonstration_of_naive_bayes_code.mp4
36.3 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/10-working_of_knn.mp4
32.9 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/11-example_of_knn_algorithm.mp4
45.2 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/12-demonstration_of_knn_setting_up_the_model.mp4
50.3 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/13-demonstration_of_knn_transforming_and_scaling_data.mp4
46.9 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/14-demonstration_of_knn_creating_classifier.mp4
28.1 MB
02-Machine_Learning_Algorithms/02-Svm_Knn_And_Naive_Bayes_Algorithms/15-svm_knn_and_naive_bayes_when_to_use_which_algorithm_instructions.html
5.0 KB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/01-dimensionality_reduction.mp4
57.4 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/02-introduction_to_pca.mp4
53.4 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/03-applying_pca.mp4
45.3 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/04-eigen_values_and_eigen_vectors.mp4
59.4 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/05-demonstration_initializing_pca.mp4
25.1 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/06-demonstration_determining_optimal_number_of_components_through_pca.mp4
36.7 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/07-demonstration_implementing_optimal_pca.mp4
45.1 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/08-working_of_lda.mp4
55.5 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/09-demonstration_of_lda.mp4
58.5 MB
02-Machine_Learning_Algorithms/03-Dimensionality_Reduction/10-best_practices_for_dimensionality_reduction_pca_vs_lda_instructions.html
5.5 KB
02-Machine_Learning_Algorithms/04-Module_Wrap_Up_And_Assessment/01-summary_for_machine_learning_algorithms.mp4
16.4 MB
03-Association_Rule_Mining_And_Recommendation_System/01-Association_Rules/01-what_are_association_rules.mp4
45.3 MB
03-Association_Rule_Mining_And_Recommendation_System/01-Association_Rules/02-apriori_algorithm.mp4
34.4 MB
03-Association_Rule_Mining_And_Recommendation_System/01-Association_Rules/03-demonstrating_apriori_algorithm.mp4
87.7 MB
03-Association_Rule_Mining_And_Recommendation_System/01-Association_Rules/04-fp_growth_in_association_rule_instructions.html
5.6 KB
03-Association_Rule_Mining_And_Recommendation_System/02-Recommendation_Engines/01-what_are_recommendation_engine.mp4
34.5 MB
03-Association_Rule_Mining_And_Recommendation_System/02-Recommendation_Engines/02-cbf.mp4
33.6 MB
03-Association_Rule_Mining_And_Recommendation_System/02-Recommendation_Engines/03-demonstration_of_recommendation_engine_preparing_data.mp4
56.7 MB
03-Association_Rule_Mining_And_Recommendation_System/02-Recommendation_Engines/04-demonstration_testing_the_model.mp4
49.5 MB
03-Association_Rule_Mining_And_Recommendation_System/02-Recommendation_Engines/05-how_recommendation_engines_personalize_your_world_instructions.html
4.8 KB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/01-elements_for_reinforcement_learning.mp4
27.0 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/02-demonstration_of_boosting_explaining_the_dataset.mp4
55.0 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/03-demonstration_of_boosting_cleaning_and_transforming_dataset.mp4
56.3 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/04-demonstration_of_boosting_factors_affecting_promotion.mp4
34.5 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/05-demonstration_of_boosting_total_score_and_service_affecting_promotion.mp4
48.4 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/06-demonstration_of_boosting_age_previous_year_rating_influencing_promotion.mp4
31.0 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/07-demonstration_of_boosting_department_influencing_promotion.mp4
49.1 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/08-demonstration_of_boosting_education_affecting_promotion_and_summarization.mp4
49.2 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/09-demonstration_of_boosting_modeling_the_data.mp4
42.4 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/10-demonstration_of_boosting_building_a_model.mp4
73.2 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/11-working_of_k_means_algorithm.mp4
33.0 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/12-demonstration_of_k_means_clustering.mp4
61.1 MB
03-Association_Rule_Mining_And_Recommendation_System/03-Reinforcement_Learning_And_Boosting/13-training_models_to_get_better_with_experience_instructions.html
7.0 KB
03-Association_Rule_Mining_And_Recommendation_System/04-Module_Wrap_Up_And_Assessment/01-summary_for_association_rule_mining_and_recommendation_system.mp4
22.8 MB
04-Course_Wrap_Up_And_Assessment/01-course_summary_applied__with_python.mp4
19.3 MB
04-Course_Wrap_Up_And_Assessment/02-final_project_cab_booking_demand_analysis_instructions.html
4.8 KB
Resources.zip
1.7 MB
Support - Onehack.Us.txt
94 bytes