Search Torrents
|
Browse Torrents
|
48 Hour Uploads
|
TV shows
|
Music
|
Top 100
Audio
Video
Applications
Games
Porn
Other
All
Music
Audio books
Sound clips
FLAC
Other
Movies
Movies DVDR
Music videos
Movie clips
TV shows
Handheld
HD - Movies
HD - TV shows
3D
Other
Windows
Mac
UNIX
Handheld
IOS (iPad/iPhone)
Android
Other OS
PC
Mac
PSx
XBOX360
Wii
Handheld
IOS (iPad/iPhone)
Android
Other
Movies
Movies DVDR
Pictures
Games
HD - Movies
Movie clips
Other
E-books
Comics
Pictures
Covers
Physibles
Other
Details for:
Stephan T. Artificial Intelligence in Medicine 2025
stephan t artificial intelligence medicine 2025
Type:
E-books
Files:
2
Size:
26.7 MB
Uploaded On:
July 15, 2024, 4:36 a.m.
Added By:
andryold1
Seeders:
5
Leechers:
8
Info Hash:
2B4EA0D828071334AFA96D4C1D45CDD221D945CA
Get This Torrent
Textbook in PDF format In the ever-evolving realm of healthcare, Artificial Intelligence in Medicine emerges as a trailblazing guide, offering an extensive exploration of the transformative power of Artificial Intelligence (AI). Crafted by leading experts in the field, this book sets out to bridge the gap between theoretical understanding and practical application, presenting a comprehensive journey through the foundational principles, cutting-edge applications, and the potential impact of AI in the medical landscape. This book embarks on a journey from foundational principles to advanced applications, presenting a holistic perspective on the integration of AI into diverse aspects of medicine. With a clear aim to cater to both researchers and practitioners, the scope extends from fundamental AI techniques to their innovative applications in disease detection, prediction, and patient care. Distinguished by its practical orientation, each chapter presents actionable workflows, making theoretical concepts directly applicable to real-world medical scenarios. This unique approach sets the book apart, making it an invaluable resource for learners and practitioners alike. Key Features • Comprehensive Exploration: From deep learning approaches for cardiac arrhythmia to advanced algorithms for ocular disease detection, the book provides an in-depth exploration of critical topics, ensuring a thorough understanding of AI in medicine. • Cutting-Edge Applications: The book delves into cutting-edge applications, including a vision transformer-based approach for brain tumor detection, early diagnosis of skin cancer, and a deep learning-based model for early detection of COVID-19 using chest X-ray images. • Practical Insights: Practical workflows and demonstrations guide readers through the application of AI techniques in real-world medical scenarios, offering insights that transcend theoretical boundaries. This book caters to researchers, practitioners, and students in medicine, Computer Science, and healthcare technology. With a focus on practical applications, this book is an essential guide for navigating the dynamic intersection of AI and medicine. Whether you are an expert or a newcomer to the field, this comprehensive volume provides a roadmap to the revolutionary impact of AI on the future of healthcare. PART 1. Foundations of AI in healthcare Exploring deep learning approaches for cardiac arrhythmia diagnosis Neural networks and LDA-based machine learning framework for the early detection of breast cancer Advanced deep learning algorithms for early ocular disease detection using fundus images PART 2. Disease detection and diagnosis A vision transformer-based approach for brain tumor detection Early detection of skin cancer through human-computer collaboration Improved mass detection in mammogram images with Dual Tree Complex Wavelet Transform and Fourier Descriptors A deep learning-based model for early detection of COVID-19 using chest X-ray images Detection of seizure activity in fMRI images using deep learning techniques PART 3. Disease prediction and public health Improving prediction accuracy for neo-adjuvant chemotherapy response in breast cancer through 3D image segmentation and deep learning techniques A machine learning predictive framework for diabetes management using blood parameters A combined neuro-fuzzy and Naive Bayes approach for swine flu disease prediction Enhancing decision-making in maternal public healthcare using a knowledge discovery-based predictive analytics framework PART 4. Patient care and enhancements Enhancing patient care and treatment through explainable AI: A gap analysis Improved medical image captioning for chest X-rays using a hybrid VGG-ELECTRA model Diagnosing Parkinson’s disease using a deep learning model based on electromyography sensors Enhancing heart disease prediction with Hybridized KNN-MOPSO algorithm
Get This Torrent
Readme.txt
656 bytes
Stephan T. Artificial Intelligence in Medicine 2025.pdf
26.7 MB