Search Torrents
|
Browse Torrents
|
48 Hour Uploads
|
TV shows
|
Music
|
Top 100
Audio
Video
Applications
Games
Porn
Other
All
Music
Audio books
Sound clips
FLAC
Other
Movies
Movies DVDR
Music videos
Movie clips
TV shows
Handheld
HD - Movies
HD - TV shows
3D
Other
Windows
Mac
UNIX
Handheld
IOS (iPad/iPhone)
Android
Other OS
PC
Mac
PSx
XBOX360
Wii
Handheld
IOS (iPad/iPhone)
Android
Other
Movies
Movies DVDR
Pictures
Games
HD - Movies
Movie clips
Other
E-books
Comics
Pictures
Covers
Physibles
Other
Details for:
Huffaker R. Nonlinear Time Series Analysis with R 2017
huffaker r nonlinear time series analysis r 2017
Type:
E-books
Files:
1
Size:
30.9 MB
Uploaded On:
Nov. 3, 2024, 1 p.m.
Added By:
andryold1
Seeders:
1
Leechers:
1
Info Hash:
CAB91C35674ADC0A7E3926A45AC1BC88F5933AA0
Get This Torrent
Textbook in PDF format Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians–with limited knowledge of nonlinear dynamics–to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic. The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework–condensed from sound empirical practices recommended in the literature–that details a step-by-step procedure for applying NLTS in real-world data diagnostics
Get This Torrent
Huffaker R. Nonlinear Time Series Analysis with R 2017.pdf
30.9 MB