Search Torrents
|
Browse Torrents
|
48 Hour Uploads
|
TV shows
|
Music
|
Top 100
Audio
Video
Applications
Games
Porn
Other
All
Music
Audio books
Sound clips
FLAC
Other
Movies
Movies DVDR
Music videos
Movie clips
TV shows
Handheld
HD - Movies
HD - TV shows
3D
Other
Windows
Mac
UNIX
Handheld
IOS (iPad/iPhone)
Android
Other OS
PC
Mac
PSx
XBOX360
Wii
Handheld
IOS (iPad/iPhone)
Android
Other
Movies
Movies DVDR
Pictures
Games
HD - Movies
Movie clips
Other
E-books
Comics
Pictures
Covers
Physibles
Other
Details for:
Thakare A. Hybrid Intelligent Systems..Information Retriev. 2023
thakare hybrid intelligent systems information retriev 2023
Type:
E-books
Files:
1
Size:
7.9 MB
Uploaded On:
Sept. 17, 2022, 12:03 p.m.
Added By:
andryold1
Seeders:
1
Leechers:
0
Info Hash:
3762FBFBBF35A366C9443B4F94D1DD68B175B1AB
Get This Torrent
Textbook in PDF format This book covers the architectures of modern information systems pertaining to structured and unstructured data retrieval, and there is a detailed discussion on how to develop computational models for retrieval systems. It describes evolutionary approaches for optimal information retrieval and the design of hybrid intelligent information retrieval systems for various applications. The focus is on three key areas: Optimality in Information Retrieval with Evolutionary Algorithms, Semantic Web Information Retrieval, and Natural Language Processing for Information Retrieval. This is a comprehensive textbook on the subject, covering a broad array of topics with more emphasis on the techniques that have been profitably employed in exploiting the available information. To give a clear understanding of the topics, the case studies and examples of hybrid intelligent information systems are also included. Deep learning methods have proven applicability in information retrieval (IR). Deep learning models eliminate human bias for feature or relevance measure and make it more efficient. Deep learning has a lot of potential to improvise IR. Recurrent neural networks (RNNs) are highly efficient with an internal memory, and it has the most promising algorithms. RNN has gained more popularity with enhanced computation capacity, large volume of data, and long short-term memory that is known as LSTM. In sequen tial data, things are in order and follow each other, e.g., DNA sequence data and time-series data. RNN stores input in internal memory; there fore, it is more useful for problems with sequential data. Also, RNN stores important information about input in internal memory, thus improving accuracy in predicting the next stage. RNN algorithms are applicable to sequential data because of internal memory storage capacity, e.g., it can be efficiently used for time series, text, financial data, and so on. With respect to other algorithms, RNN algorithms have a very deep understanding of a sequence and about context. RNNs provide more accurate predictive results for input sequential data than other algorithms. - Talks about the design, implementation, and performance issues of the hybrid intelligent information retrieval system in one book - Gives a clear insight into challenges and issues in designing a hybrid information retrieval system - Includes case studies on structured and unstructured data for hybrid intelligent information retrieval - Provides research directions for the design and development of intelligent search engines This book is aimed primarily at graduates and researchers in the information retrieval domain
Get This Torrent
Thakare A. Hybrid Intelligent Systems for Information Retrieval 2023.pdf
7.9 MB