Search Torrents
|
Browse Torrents
|
48 Hour Uploads
|
TV shows
|
Music
|
Top 100
Audio
Video
Applications
Games
Porn
Other
All
Music
Audio books
Sound clips
FLAC
Other
Movies
Movies DVDR
Music videos
Movie clips
TV shows
Handheld
HD - Movies
HD - TV shows
3D
Other
Windows
Mac
UNIX
Handheld
IOS (iPad/iPhone)
Android
Other OS
PC
Mac
PSx
XBOX360
Wii
Handheld
IOS (iPad/iPhone)
Android
Other
Movies
Movies DVDR
Pictures
Games
HD - Movies
Movie clips
Other
E-books
Comics
Pictures
Covers
Physibles
Other
Details for:
Blanchard T. Data Science for Marketing Analytics...Python 2019
blanchard t data science marketing analytics python 2019
Type:
E-books
Files:
1
Size:
6.7 MB
Uploaded On:
Feb. 26, 2020, 6:50 a.m.
Added By:
andryold1
Seeders:
2
Leechers:
0
Info Hash:
4EEB545A03FA91721C496C0759FB28724196B88D
Get This Torrent
Textbook in PDF format Explore new and more sophisticated tools that reduce your marketing analytics efforts and give you precise results Key Features Study new techniques for marketing analytics Explore uses of machine learning to power your marketing analyses Work through each stage of data analytics with the help of multiple examples and exercises Book Description Data Science for Marketing Analytics covers every stage of data analytics, from working with a raw dataset to segmenting a population and modeling different parts of the population based on the segments. The book starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach, and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models, and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modeling customer product choices. By the end of this book, you will be able to build your own marketing reporting and interactive dashboard solutions
Get This Torrent
Blanchard T. Data Science for Marketing Analytics...Python 2019.pdf
6.7 MB